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Abstract

The n-site Bloch–McConnell equations describe the evolution of nuclear spin magnetization in the laboratory or rotating frames

of reference for molecules subject to chemical or conformational interconversions between n species with distinct NMR chemical

shifts. Perturbation theory is used to approximate the largest eigenvalue of the Bloch–McConnell equations and obtain analytical

expressions for the rotating-frame relaxation rate constant and for the laboratory frame resonance frequency and transverse re-

laxation rate constant. The perturbation treatment is valid whenever the population of one site is dominant. The new results are

generally applicable to investigations of kinetic processes by NMR spectroscopy.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Chemical reaction kinetics can be quantified using a

variety of techniques in nuclear magnetic resonance

(NMR) spectroscopy [1]. Chemical exchange relaxation

or line broadening results from stochastic transitions

between chemical or conformational states with different

magnetic properties. As a consequence, nuclear spin

coherences are dephased, causing an increase in phe-
nomenological relaxation rate constants. Chemical

exchange phenomena contribute to both R2, the free-

precession relaxation rate constant for transverse mag-

netization, and R1q, the characteristic relaxation rate

constant for magnetization spin-locked along the direc-

tion of the effective magnetic field in the rotating frame of

reference. The dependence of R1q upon on the amplitude

and frequency of the applied rf field is called relaxation
dispersion. R1q rotating-frame relaxation experiments

provide a powerful means to elucidate intramolecular

conformational changes, ligand binding, and folding of

proteins and other biological macromolecules that occur

with rate constants between 101 and 105 s�1 [1].
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In experimental studies, R1q relaxation dispersion data
are analyzed using theoretical expressions derived for

particular chemical exchange mechanisms to determine

the rate constants, site populations, and resonance fre-

quencies for nuclear spins affected by the kinetic process.

For applications to slowly tumbling macromolecules

with complex NMR spectra, expressions are needed that

incorporate the conditions R2 > R1 and off-resonance rf

fields. When exchange is fast compared to the differences
in resonance frequencies for spins in different sites, a

Redfield perturbation approach can be used to derive

theoretical expressions for R1q [2,3]. When exchange is

not fast, approximate theoretical expressions for R1q can

be obtained by both time-domain and frequency-domain

analyses of the stochastic Liouville equation or the

Bloch–McConnell equation [3–5]. Theoretical results

have been reported for a number of cases: fast 2-site
exchange [2,6], fast n-site exchange [3], and 2-site ex-

change outside of the fast exchange limit under the

condition that the site populations are asymmetric [4,5].

Although most experimental studies of chemical ex-

change in proteins using R1q relaxation dispersion have

assumed fast 2-site exchange [1], a recent investigation

has shown improved results when using more general

expressions for 2-site exchange appropriate for all time
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scales [7]. Furthermore, experimental identification of
3-site exchange processes in proteins underlines the im-

portance of improved theoretical approaches for de-

scribing n-site exchange phenomena in NMR

spectroscopy [8–10].

The present paper generalizes the approach of Trott

and Palmer [4] from 2-site to n-site chemical exchange

processes. The resulting expressions for R1q are accurate

for all exchange time scales provided that the population
of one site is dominant. The same formalism is used to

analyze n-site chemical exchange contributions to

free-precession evolution in the absence of rf fields.

The resulting expressions extend the Swift–Connick

relationships [11].
2. Bloch–McConnell equation

We consider a chemical reaction or conformational

transition that exchanges a nuclear spin between n sites

Ai with distinct magnetic environments,

A1 �
k12

k21
A2; A1 �

k13

k31
A3; � � � ; Ai �

kij

kji
Aj; � � � ; An�1 �

kðn�1Þn

knðn�1Þ
An

ð1Þ

in which kij is the reaction rate constant for the transi-

tion from ith to jth site. The chemical kinetics of such a

system are described by the equation:

d

dt
~c ¼ K~c; ð2Þ

in which the kinetics matrix is given by:

K ¼

�s1 k21 � � � kn1
k12 �s2 � � � kn2
..
. ..

. . .
. ..

.

k1n k2n � � � �sn

0
BBB@

1
CCCA; ð3Þ

Kii ¼ �si ¼ �
Xn

j¼1
j6¼i

kij; ð4Þ

Kij ¼ kji for i 6¼ j, and the elements of ~c are the site

populations of the reacting species. The equilibrium site
populations are defined by K~c ¼ 0. In the absence of

exchange processes, the time evolution of the nuclear

spin magnetization of the ith site is given by the Bloch

equation [12]:

d

dt
~Mi ¼ Li

~Mi þ R1i
~M0i; ð5Þ

in which

Li ¼
�R2i �di 0

di �R2i �x

0
@

1
A; ð6Þ
0 x �R1i
the resonance offset for the ith site in the rotating frame
is defined as

di ¼ Xi � xrf ; ð7Þ
where Xi is the resonance frequency of the ith site; xrf

is the frequency and x is the amplitude, defined by the

Rabi frequency, of the applied rf field; R1i and R2i are

the intrinsic longitudinal and transverse relaxation

rates, respectively, resulting from processes other than

chemical exchange; ~Mi ¼ ðMxi;Myi;MziÞT is the three-

dimensional Cartesian magnetization vector; and
~M0i ¼ ð0; 0;M0iÞT is the time-independent thermal
equilibrium magnetization in the absence of the rf field

[12].

The state of the n-site system, presented in Eq. (1), is

described by a 3n-dimensional magnetization vector

~M ¼

~M1

~M2

..

.

~Mn

0
BBB@

1
CCCA: ð8Þ

Its time evolution is a superposition of the precession-

relaxation of Eq. (5) and the exchange processes of

Eq. (2) and is given by the Bloch–McConnell equation
[13]:

d

dt
~M ¼ D~M þ~B; ð9Þ

where

D ¼ Lþ K� 1s; ð10Þ

L ¼ �n
i¼1Li ¼

L1

L2

. .
.

Ln

0
BBB@

1
CCCA; ð11Þ

~B ¼

R11
~M01

R12
~M02

..

.

R1n
~M0n

0
BBB@

1
CCCA; ð12Þ

where 1s is the identity matrix in the spin space, i.e., the

3� 3 identity matrix, and � and � denote the direct

product and sum, respectively.

In general, Eq. (9) is a first-order linear differential

equation with constant coefficients. Its solution has the

form

~MðtÞ ¼
X3n
i¼1

eki t~ln þ~a; ð13Þ

where ki is the ith eigenvalue of the matrix D in Eq. (10),
~li is proportional to the corresponding eigenvector, and
~a is the stationary solution.

The eigenvalues of a real matrix are the roots of the

corresponding characteristic polynomial, which is also
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necessarily a real function. Therefore, the set of eigen-
values consists of m real values and ð3n� mÞ=2 conju-

gate pairs of complex values, in which m6 n. For

realistic experimental conditions, numerical simulations

establish that m ¼ n and that the matrix D has n real

eigenvalues and n pairs of complex ones with relatively

large imaginary parts. In practice, x varies at different

points within the macroscopic NMR sample due to in-

strumental imperfections. The x inhomogeneity intro-
duces variability in the eigenvalues and in the

orientation of the eigenbasis. While the latter effect is

insignificant, eigenvalue inhomogeneity results in rapid,

on the time scale of the variation the x due to the in-

homogeneity or faster, averaging of the oscillatory (i.e.,

corresponding to non-real eigenvalues) components to

zero. In many cases of interest, one real eigenvalue is

significantly greater than the other n� 1 ones. On ex-
perimentally accessible time scales, the largest (least

negative) real eigenvalue dominates the evolution of the

magnetization components and the relaxation decay is

essentially monoexponential. Thus, the problem of

finding the relaxation rate constant R1q reduces to

finding the largest real eigenvalue k of the matrix

D ¼ Lþ K� 1s:

R1q ¼ �k: ð14Þ
3. One dominant site

In many systems of practical interest, the free energy

difference between some sites is greater than kBT ;
consequently, the site populations are unequal because

even small differences in energy translate into large

population differences through the Boltzmann

equation.
We consider the case for which the the population

of the first site is much greater than the populations

of others: p1 � p2; . . . ; pn. Through the detailed bal-

ance relationship, this assumption implies that the first

column of K is much smaller than the rest of the

matrix, specifically its first row. By K0, we shall denote

the matrix obtained from K by setting its first column

to zero. Additionally, R1i and R2i are assumed to be
much smaller than other non-trivial components of Li.

The latter assumption is not essential to the approach

to be presented (vide infra), but simplifies the resulting

expressions. We also introduce an approximation of

Li

L0
i ¼

0 �di 0
di 0 �x
0 x 0

0
@

1
A: ð15Þ

Therefore, we can compute the the largest real eigen-

value k of the matrix D ¼ Lþ K� 1s as a perturbed
value of the largest real eigenvalue k0 of the matrix
D0 ¼ L0 þ K0 � 1s, where L0 ¼ �n

i¼1L
0
i. Examination of

D0, shows that the eigenvalue k0 is zero, and the corre-

sponding right eigenvector is

~x ¼

~v
~0
..
.

~0

0
BBB@

1
CCCA; ð16Þ

in which ~v is both left and right eigenvector of L0
1 cor-

responding to its zero eigenvalue:

~v ¼ 1

xe1

x
0

d1

0
@

1
A; ð17Þ

and

xei ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2i þ x2

q
: ð18Þ

The first three elements of the corresponding left ei-

genvector ~y of D0 are also~v. Therefore, the eigenvector

can be looked for in the form

~y ¼

~v
~v
..
.

~v

0
BBB@

1
CCCA�

~0
~z2
..
.

~zn

0
BBB@

1
CCCA: ð19Þ

From perturbation theory [14],

k ¼ k0 þ~yTðD�D0Þ~x
~yT~x

: ð20Þ

Using the facts that k0 ¼ 0, ~yT~x ¼ 1, and

~yTðL� L0Þ~x ¼~vTðL1 � L0
1Þ~v ð21Þ

¼ � d21
x2

e1

R11 �
x2

x2
e1

R21; ð22Þ

yields:

k ¼ � d21
x2

e1

R11 �
x2

x2
e1

R21 þ~yTððK� K0Þ � 1sÞ~x: ð23Þ

Using Eq. (19) and the fact that only the first column of

K� K0 is non-zero, we obtain the following expression
for k:

k ¼ � d21
x2

e1

R11 �
x2

x2
e1

R21 �
Xn

i¼2

k1i~zTi~v: ð24Þ

The values~zi are found by substituting Eq. (19) into the
definition of the left eigenvector ~yTD0 ¼ k0~yT ¼ 0.

Transposing and simplifying the resulting expressions,

and noting that L0T
i ¼ �L0

i, the following equation for

the~zi values is obtained:



 

Fig. 1. Offset dependence of Rex for a system with no minor exchange.

The solid line represents the exact numerical solution and the dashed

line shows the approximate solution obtained from Eq. (31). Curves

were calculated using (A) x ¼ 500s�1 and (B) x ¼ 1000s�1. Other pa-

rameters used in the calculations were: p1 ¼ 0:90, p2 ¼ 0:05, p3 ¼ 0:03,

p4 ¼ 0:02, d2 � d1 ¼ 2000s�1, d3 � d1 ¼ �3000s�1, d4 � d1 ¼ 000s�1,

k12 þ k21 ¼ 200s�1, k13 þ k31 ¼ 200s�1, k14 þ k41 ¼ 4200s�1,

R1 ¼ 1:5s�1, and R2 ¼ 11s�1. The abscissa DX indicates the difference

between xrf and the population-average resonance frequency.
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s2 þ L0
2 �k23 � � � �k2n

�k32 s3 þ L0
3 � � � �k3n

..

. ..
. . .

. ..
.

�kn2 �kn3 � � � sn þ L0
n

0
BBBBB@

1
CCCCCA

~z2
~z3

..

.

~zn

0
BBBB@

1
CCCCA

¼

L0
2~v

L0
3~v

..

.

L0
n~v

0
BBBBB@

1
CCCCCA
:

ð25Þ

Eq. (25) is linear, so it can be solved symbolically (and
automatically) for any n to give the result:

R1q ¼ cos2 h1R11 þ sin2 h1R21 þ
Xn

i¼2

k1i~zTi~v; ð26Þ

where sin h1 ¼ x=xe1 and cos h1 ¼ d1=xe1. Eq. (26) is

one of the primary results of this paper.

For convenience, we also define the effective chemical

exchange contribution to relaxation as:

Rex ¼ R1q= sin
2 h1 � R11= tan

2 h1 � R21: ð27Þ

From Eqs. (15) and (17), we note (for use in the fol-

lowing) that:

ðL0
i þ siÞ�1 ¼

si �di 0

di si �x

0 x si

0
B@

1
CA

�1

¼ 1

si

1

s2i þ x2
ei

�
s2i þ x2 sidi dix

�sidi s2i six

dix �six s2i þ d2i

0
B@

1
CA ð28Þ

and

L0
i~v ¼

xDxi1

xe1

0

1

0

0
@

1
A ð29Þ

in which Dxij ¼ di � dj. We also define:

~z 0i ¼ ðL0
i þ siÞ�1

L0
i~v ¼

x
xe1

Dxi1

s2i þ x2
ei

di
si
�x

0
@

1
A: ð30Þ

The following sections consider some special cases of

practical interest.
3.1. No minor exchange

We refer to the set of all of the exchange reactions

that do not involve the dominant site (site 1) as minor
exchange. From Eq. (25), in the absence of the minor

exchange, ~zi ¼~z 0i . Using this result with the under-

standing that si ¼ ki1, we obtain:

R1q ¼ cos2 h1R11 þ sin2 h1R21 þ sin2 h1
Xn

i¼2

k1iDx2
i1

k2i1 þ x2
ei
:

ð31Þ
This result generalizes the expression previously re-

ported by Trott and Palmer [4] for 2-site exchange.

Fig. 1 illustrates this expression for a 4-site exchange

process. The important qualitative result is that the

graph of Rex versus resonance offset consists of n� 1

Lorentzian-shaped peaks with local maxima occurring
when di ¼ 0 for i ¼ 2; . . . ; n. The ith Lorentzian has a

full-width-at-half-height equal to 2ðk2i1 þ x2Þ1=2. Conse-
quently, the number of components in the Rex profile is

most easily discerned when x is weak, as indicated by

comparison of Figs. 1A and 1B.

3.2. Weak minor exchange

We shall call the minor exchange weak, if the rate of

conversion from every minor site to the dominant site is

much greater than the rates of conversion between mi-

nor sites, i.e.,

ki1 � kij; where i; j ¼ 2; . . . ; n: ð32Þ
Multiplying Eq. (25) from the left by �n

i¼2ðL0
i þ siÞ�1

, we

obtain:



0 1

Fig. 2. Offset dependence of Rex for a system with weak minor ex-

change. The solid line represents the exact numerical solution and the

dashed and dotted lines show the approximate solutions obtained from

Eqs. (35) and (31), respectively. Calculations used x ¼ 1000s�1,

p1 ¼ 0:95, p2 ¼ 0:03, p3 ¼ 0:02, d2 � d1 ¼ 2000s�1, d3 � d1 ¼
�4000s�1, k12 þ k21 ¼ 500s�1, k13 þ k31 ¼ 1000s�1, k23 þ k32 ¼
700s�1, R1 ¼ 1:5s�1, and R2 ¼ 11s�1. The abscissa DX indicates the

difference between xrf and the population-average resonance

frequency.
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1s �k23ðL0
2þ s2Þ�1 � � � �k2nðL0

2þ s2Þ�1

�k32ðL0
3þ s3Þ�1

1s � � � �k3nðL0
3þ s3Þ�1

..

. ..
. . .

. ..
.

�kn2ðL0
nþ snÞ�1 �kn3ðL0

nþ snÞ�1 � � � 1s

BBBBB@

CCCCCA

�

~z2
~z3

..

.

~zn

0
BBBB@

1
CCCCA

¼

~z 02
~z 03

..

.

~z 0n

0
BBBBBB@

1
CCCCCCA
: ð33Þ

From Eq. (28), the elements of ðL0
i þ siÞ�1

obviously do

not exceed 1=si in absolute value, and because si P ki1,
the weak minor exchange condition (32) implies that the
off-diagonal elements in Eq. (33) are significantly smaller

than 1. In the zero-order approximation~zi ¼~z 0i , as in the

case of no minor exchange, while the next order of ap-

proximation uses the expansion ð1þ �XÞ�1 � 1� �X:

~zi �~z 0i þ
X

jP 2
j 6¼i

kijðL0
i þ siÞ�1

~z 0j : ð34Þ

Combining this result with Eqs. (26) and (30) yields:

R1q ¼ cos2 h1R11 þ sin2 h1R21 þ sin2 h1
Xn

i¼2

k1i
s2i þ x2

ei

� Dx2
i1

2
666664

þ 1

si

Xn

j¼2

j 6¼i

kijDxj1

s2j þ x2
ej

þððx2:þ d1diÞDxji þ s2iDxj1 þ sisjDxi1Þ

3
777775
:

ð35Þ

Fig. 2 illustrates this expression for a 3-site exchange

process. The effect of weak minor exchange increases the

exchange broadening compared to results obtained in

the absence of minor exchange.

3.3. Population-averaged values

Let us introduce the population-averaged values:

d ¼
Xn

i¼1

pidi; ð36Þ

xe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ x2

p
; ð37Þ
sin h ¼ x=xe; ð38Þ
cos h ¼ d=xe; ð39Þ

R1 ¼
Xn

i¼1

piR1i; ð40Þ

R2 ¼
Xn

i¼1

piR2i: ð41Þ

The differences resulting from replacing sin h1, cos h1,
R11, and R21 with the respective population-averaged

values in Eqs. (26), (27), (31), and (35), are second order

(quadratic or bilinear) in pi, R1j, and R2j, where

i ¼ 2; . . . ; n, j ¼ 1; . . . ; n. Therefore, these differences can
be ignored and population-averaged values can be

substituted into Eqs. (26), (27), (31), and (35).
4. Free-precession evolution

The above formalism is easily adapted to the free-

precession evolution of transverse magnetization in the

absence of radiofrequency fields. The resonance line of

the dominant component of the complex magnetization,

MþðtÞ, is described by a resonance frequency and a re-
laxation rate constant given by:

iX� R2 ¼ id1 � R21 þ k; ð42Þ
in which k is the eigenvalue of D ¼ Lþ K with the

largest (least negative) real part, Li ¼ L0
i ¼ iDxi1 � DR2i,

and DR2i ¼ R2i � R21. For free-precession evolution of

transverse magnetization, 1s ¼ 1. The right eigenvector

of D0, corresponding to its zero eigenvalue, is
~x ¼ ð1; 0; . . . ; 0ÞT, and by direct analogy to the above

derivation of Eq. (26),
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iX� R2 ¼ id1 � R21 �
Xn

i¼2

k1izi; ð43Þ

in which

s2 � L2 �k23 � � � �k2n
�k32 s3 � L3 � � � �k3n

..

. ..
. . .

. ..
.

�kn2 �kn3 � � � sn � Ln

0
BBBB@

1
CCCCA

z2
z3

..

.

zn

0
BBBB@

1
CCCCA

¼ �

L2

L3

..

.

Ln

0
BBBB@

1
CCCCA
:

ð44Þ

The resonance frequency and relaxation rate constant

are obtained from the imaginary and real parts of the
right-hand side of Eq. (43), respectively. Eq. (43) is an-

other of the principal results of this paper.

In the absence of minor exchange,

zi ¼
�iDxi þ DR2i

ki1 � iDxi þ DR2i

¼ DR2iðki1 þ DR2iÞ þ Dx2
i � iDxiki1

ðki1 þ DR2iÞ2 þ Dx2
i

; ð45Þ

which yields

X ¼ d1 þ
Xn

i¼2

k1iki1Dxi

ðki1 þ DR2iÞ2 þ Dx2
i

; ð46Þ

R2 ¼ R21 þ
Xn

i¼2

k1i
DR2iðki1 þ DR2iÞ þ Dx2

i

ðki1 þ DR2iÞ2 þ Dx2
i

: ð47Þ

These equations extend the results of Skrynnikov et al.

[15] for 2-site exchange. The n-site Swift–Connick rela-

tionships [11] differ from Eqs. (46) and (47) because DR2i

is replaced by R2i. The present results are more accurate
than the Swift–Connick relationships if DR2i are small,

but R2i are comparable in magnitude to ki1.
For weak minor exchange,

zi ¼ z0i þ
ðsi þ DR2i þ iDxiÞ
ðsi þ DR2iÞ2 þ Dx2

i

Xn

j¼2
j 6¼i

kijz0j; ð48Þ

in which

z0i ¼
DR2iðsi þ DR2iÞ þ Dx2

i � iDxisi
ðsi þ DR2iÞ2 þ Dx2

i

: ð49Þ
4.1. Three sites

For completeness, we provide below some limiting

expressions for the exchange contribution to the trans-

verse relaxation rate constant, Rex ¼ R2 � R21, for 3-site

chemical exchange. For simplicity, si � DR2i and

Dxi � DR2i are assumed; thus, DR2i ¼ 0 can be utilized

in Eqs. (43)–(49). The general result is derived from Eq.

(43). In the absence of minor exchange,
Rex ¼
k12Dx2

2

k221 þ Dx2
2

þ k13Dx2
3

k231 þ Dx2
3

: ð50Þ

For weak minor exchange,

Rex ¼
k12Dx2

2

s22 þ Dx2
2

þ k13Dx2
3

s23 þ Dx2
3

þ ðk13k32Dx2 þ k12k23Dx3Þðs3Dx2 þ s2Dx3Þ
ðs22 þ Dx2

2Þðs23 þ Dx2
3Þ

: ð51Þ
5. Fast exchange within a group of sites

The following applies equally to R1q relaxation and

free-precession evolution. Herein, we shall use L̂i to

denote either evolution operator for site i.
Removing the restriction that the population of the

first site is much greater than the populations of all

others, let us assume that molecules in some of the n
sites exchange very rapidly among themselves, in some

sense. Without loss of generality, let these sites be
numbered m through n.

If the exchange rates involving sites m through n
approach infinity, then on physical grounds, these

n� mþ 1 sites can be treated as a single effective site.

This can be shown by noting that the ðMm; . . . ;MnÞT
vector will have a quasi-steady state value that belongs

to the null space of the kinetics matrix corresponding to

the ‘‘fast’’ reactions, i.e.,

Mi ¼ aiMf ; ð52Þ
where

ai ¼ pi=
Xn

j¼m

pj; ð53Þ

Mf ¼
Xn

i¼m

Mi: ð54Þ

Adding rows m through n of D, and using Eqs. (52) and

(54) generates the master equation for the new effective

system of m sites. The evolution operators L̂i for sites 1
through m� 1 will remain unchanged. The evolution

operator for the effective site L̂f , the new mth site, is the

population average:

L̂f ¼
Xn

i¼m

aiL̂i: ð55Þ

Similarly, the rate constants for the reactions ‘‘leaving’’

the effective site are the population-averaged values as

well:

kfj ¼
Xn

i¼m

aikij; where j < m; ð56Þ

while the rate constants for the reactions ‘‘entering’’ the
effective site are given by



Fig. 4. Offset dependence of Rex for a linear 3-site system. Curves were

calculated using Eqs. (26) and (27) for (–––) k23 þ k32 ¼ 1s�1, (– – –)

k23 þ k32 ¼ 1000s�1, and (- - -) k23 þ k32 ¼ 100; 000s�1. Other param-

eters used in the calculations were: x ¼ 1000s�1, p1 ¼ 0:94, p2 ¼ 0:02,

p3 ¼ 0:04, d2 � d1 ¼ 2000s�1, d3 � d1 ¼ �4000s�1, k12 þ k21 ¼ 500s�1,

k13 þ k31 ¼ 0s�1, R1 ¼ 1:5s�1, and R2 ¼ 11s�1. The abscissa DX indi-

cates the difference between xrf and the population-average resonance

frequency.
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kjf ¼
Xn

i¼m

kji; where j < m: ð57Þ

Establishing the conditions of applicability of these

formulas is beyond the scope of this paper. The results
describe the asymptotic behavior of the system, and are

not necessarily valid approximations when the exchange

rates involving sites m through n are merely much

greater than other exchange rates, the differences be-

tween the resonance frequencies, offsets, etc. To illus-

trate this point, free-precession evolution of transverse

magnetization is considered for 3-site exchange. In the

first example, site 1 is dominant, d1 ¼ 0, d2 ¼ �d3 ¼ d,
R2i ¼ 0, and the chemical kinetics are completely sym-

metric with regard to sites 2 and 3. Then, treating sites 2

and 3 as one effective site predicts Rex ¼ 0 if k23 is large.
In contrast, the result obtained using Eq. (43) is:

Rex ¼
2k12d

2

k221 þ 2k21k23 þ d2
: ð58Þ

In this case, unless k21k23 � d2, the asymptotic expres-

sion is in error by an amount on the order of k12. As a
second example, Fig. 3 illustrates the convergence of the

free-precession R2 relaxation rate for a 3-site system to

an effective value corresponding to a 2-site system, as the

exchange rate between sites 2 and 3 grows, while the site

populations and other parameters remain constant. This

example differs from the first because the populations of

sites 2 and 3 are not equal. In this case, asymptotic be-

havior requires k23 þ k32 > 106 s�1.
As another example of practical interest, Fig. 4 shows

results for R1q calculated for a linear 3-site system in

which the dominant site 1 exchanges with minor site 2

and site 2 exchanges with minor site 3, but sites 1 and 3
Fig. 3. The dependence of free-precession R2 on the rate of minor ex-

change. The solid line represents the exact numerical solution and the

dashed line shows the exact solution for the effective 2-site system ob-

tained using Eqs. (55)–(57). Calculations used p1 ¼ 0:80, p2 ¼ 0:13,

p3 ¼ 0:07, d2 � d1 ¼ 3000s�1, d3 � d1 ¼ �3000s�1, k12 þ k21 ¼ 300s�1,

k13 þ k31 ¼ 300s�1, and R2 ¼ 11s�1. The abscissa k23 þ k32 shows the

rate of exchange between sites 2 and 3.
do not directly exchange. If exchange between sites 2

and 3 is very slow, then a single peak is obtained in the

plot of Rex versus DX. The system well described by 2-

site exchange in which only sites 1 and 2 are considered.
If exchange between sites 2 and 3 is comparable to the

other rate constants and the chemical shift differences

between sites, then two peaks are evident in the plot. If

exchange between sites 2 and 3 becomes very fast, then a

single peak is observed in the graph because sites 2 and 3

are effectively averaged and the system is described ap-

proximately by a 2-site exchange process.
6. Computational fitting experiments

Eq. (31) demonstrates that if minor exchange is ab-

sent, the exchange rates are slow, and x is significantly

smaller than any differences among the resonance fre-

quencies, then the local maxima of Rex as a function of

the offset occur close to where the rf is resonant with the
minor species. From continuity considerations, or from

Eq. (35), the same conclusion should apply to systems

with weak minor exchange. One result of this paper is

that such n-site systems can be studied in a similar

fashion to the asymmetric 2-site system, as suggested

earlier in [4].

Numerical simulations show that even in situations

that may be outside of the weak minor exchange limit,
where Eqs. (31) and (35) do not strictly apply, and when

the system does not necessarily have a dominant site, a

plot of Rex as a function of offset frequency often still

exhibits n� 1 Lorentzian-shaped peaks.

Therefore, we examined the feasibility of fitting ex-

perimental R1q measurements in these cases and to de-

velop an algorithm suitable for this task. To this end, we



Table 1

Computational fitting experiment results

Error (%) Success rate (%) Da (s�1)

1 99.1 33

3 96.7 99

10 65.7 186

aD is the root mean square deviation from the ‘‘true’’ value.
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simulated idealized R1q measurements involving a 3-site
system in which the rf offsets with respect to the reso-

nance frequency of the first site were taken to be the 30

equidistant points spanning the interval ½�5000; 5000�,
the populations p1, p2, and p3, as well as the intrinsic

relaxation rates R1 and R2 were assumed known, while

the exchange rates and the resonance frequencies were

to be inferred from the ‘‘experimental’’ R1q relaxation

rates. The intrinsic relaxation rate constants can be
obtained experimentally by a variety of approaches [16].

In practice the population-averaged resonance fre-

quency, instead of the exact knowledge of the resonance

frequency of the first site, and any additional known

information about the system would be added as

constraints.

The system input parameters were chosen to satisfy

the following relationships:

x ¼ 1000;

0:4 < p1 < 0:95;

0:02; 0:1ð1� p1Þ < p2 < 0:4ð1� p1Þ;
p3 ¼ 1� p1 � p2;

2000 < d2 � d1 < 4000;

2000 < d1 � d3 < 4000;

100 < k2; ksd ; k3 < ðd2 � d1Þ=3; ðd1 � d3Þ=3;
R1 ¼ 1:5;

R2 ¼ 11;

ð59Þ

where k2 ¼ k12 þ k21, k3 ¼ k13 þ k31, and ksd ¼ k23 þ k32,
all frequencies are in angular units, and exchange rate

constants and relaxation rate constant are in units of

s�1. The inequalities denote the uniform distributions

from which the parameters were selected randomly.

Because the site populations are known, only the sum of

the forward and back exchange rate constants for each

pair of sites are required: the individual rate constants
can be determined using the detailed balance principle.

Experimentally, only systems with sufficiently low R1q

values and narrow spectral lines can be studied; there-

fore, only the systems with the free-precession relaxation

rate and the maximum R1q values smaller than 100 s�1

were used, which amounted to 35% of the randomly

selected systems.

We used the Levenberg–Marquardt non-linear least-
squares fitting algorithm [17] as implemented by the

MINPACK optimization package [18] to perform pa-

rameter fitting, and the LAPACK library [19] for ei-

genvalue calculations. Naive application of the

Levenberg–Marquardt algorithm showed that the min-

imization problem is fraught with local minima and is

subject to divergence (when one of the unknowns be-

comes very large). Applying the theoretical insights de-
scribed in earlier sections, specifically the fact that the

local minima of Rex occur close to where the rf is reso-

nant with the minor sites, to the initial choice of un-
known variables in the optimization procedure
significantly improved its convergence properties.

To simulate the experimental error, random values

taken from the Gaussian distribution with the standard

deviation calculated as a fraction of the maximum R1q

value for each system were added to the ‘‘experimental’’

R1q values.

For each error magnitude, the computational exper-

iment was repeated 1000 times with randomly selected
system parameters, as described above. The fitting was

considered successful, when the Euclidean distance in

the five-dimensional parameter space between the

‘‘true’’ parameter values and those returned by the fit-

ting procedure was smaller than 300 s�1. The results are

summarized in Table 1. The simulations suggest that

experimental characterization of at least 3-site chemical

exchange processes in proteins is feasible by R1q relax-
ation dispersion measurements.
7. Discussion and conclusion

Chemical exchange effects in NMR spectroscopy

provide powerful approaches for characterizing kinetic

processes, including intramolecular conformational
changes, ligand binding, and folding of proteins and

other biological macromolecules [1]. Herein, new ana-

lytic expressions have been presented that generalize

existing 2-site theoretical descriptions for the spin re-

laxation rate constant in the rotating frame, R1q, and for

the transverse relaxation rate constant, R2. The new

expressions are valid for n-site chemical exchange phe-

nomena whenever one site population is dominant. In
particular, systems with one dominant site and suffi-

ciently weak exchange among the minor sites will have

RexðxrfÞ relaxation dispersion profiles composed of

n� 1 Lorentzians, as a general rule. The new results are

expected to be generally applicable to the investigation

of chemical exchange phenomena in proteins and other

biological macromolecules using free-precession and

spin-locking techniques.
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